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Abstract
We investigate the formation of quark and diquark condensates in two different
situations. First, we study the phenomenon of chiral and color symmetry
breaking and their restoration for a uniformly accelerated observer due to
the thermalization Hawking–Unruh effect. The gap equations for quark and
diquark condensates with finite chemical potential are constructed. The
critical value of acceleration is also obtained. Second, we consider the
phase transitions in dense matter with quark and diquark condensates in
the static Einstein universe at finite temperature and chemical potential. The
nonperturbative expression for the thermodynamic potential is obtained. The
phase portraits of the system are constructed.

PACS numbers: 04.62.+v, 11.10.Wx, 11.30.Rd

1. Introduction

Effective field theories with four-fermion interaction of the Nambu–Jona-Lasinio type (NJL)
[1] are quite useful in describing the physics of light mesons and diquarks. It was proposed
more than 20 years ago [2–4] that at high baryon densities a colored diquark condensate
〈qq〉 might appear. In analogy with ordinary superconductivity, this effect was called color
superconductivity (CSC). The possibility for the existence of the CSC phase in regions of
moderate densities was recently proved (see, e.g., papers [5–9]). Since quark Cooper pairing
occurs in the color anti-triplet channel, a nonzero value of 〈qq〉 means that, apart from the
electromagnetic U(1) symmetry, the color SUc(3) symmetry should be spontaneously broken
inside the CSC phase as well. In the framework of NJL models the CSC phase formation
has generally been considered as a dynamical competition between diquark 〈qq〉 and usual
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quark–antiquark condensation 〈q̄q〉. Special attention has also been paid to the catalyzing
influence of color magnetic fields on the condensation of diquarks.

Recently, the dynamical chiral symmetry breaking and its restoration for a uniformly
accelerated observer due to the thermalization effect of acceleration was studied in [10] at zero
chemical potential. Further investigations of the possible influence of the Unruh temperature
on the phase transitions in dense quark matter with a finite chemical potential, and especially
on the restoration of the broken color symmetry in CSC are thus especially interesting.

Related problems have also been studied for chiral symmetry breaking in a curved
spacetime [11, 12], which may be useful for the investigation of compact stars, where the
gravitational field is strong and its effect cannot be neglected.

The paper is organized as follows. In the following section, we briefly review the extended
NJL model in the curved spacetime and obtain the general expression for the effective potential
in the mean-field approximation. Then we apply these formulae to two different situations.
First, in section 3, we study the restoration of chiral and color symmetries for a uniformly
accelerated observer by using a NJL-type model formulated in Rindler coordinates. We
calculate quark and diquark condensates as functions of the Unruh temperature and finite
chemical potential. We report the critical values of acceleration (the critical Hawking–Unruh
temperatures) for the restoration of the broken chiral and color symmetries first obtained in
[13]. Second, in section 4, we study the influence of gravitational field, temperature and
chemical potential on the behavior of the quark and diquark condensates. As the simplest
model of the curved spacetime we take the static Einstein universe. This model is widely
used in the literature in studying the phenomenon of Bose–Einstein condensation (see, e.g.
[14] and references therein). This allows us to derive a nonperturbative expression for the
thermodynamical potential and to construct the phase portraits of our system (for more details
see [15]).

2. The extended NJL model in the curved spacetime

In the D-dimensional curved spacetime with signature (+,−,−,−, . . .), the line element is
written as

ds2 = ηâb̂eâ
µeb̂

ν dxµ dxν .

The gamma-matrices γµ, metric gµν and the vielbein e
µ

â , as well as the definitions of
the spinor covariant derivative ∇ν and spin connection ωâb̂

ν are given by the following
relations [16, 17]:
{γµ(x), γν(x)} = 2gµν(x), {γâ, γb̂} = 2ηâb̂, ηâb̂ = diag(1,−1,−1,−1, . . .),

gµνg
νρ = δρ

µ, gµν(x) = e
µ

â (x)eνâ(x), γµ(x) = eâ
µ(x)γâ.

(1)

∇µ = ∂µ + �µ, �µ = 1
2ωâb̂

µ σâb̂, σâb̂ = 1
4 [γâ, γb̂],

ωâb̂
µ = 1

2 eâλ eb̂ρ[Cλρµ − Cρλµ − Cµλρ], Cλρµ = eâ
λ∂[ρeµ]â .

(2)

Here, the index â refers to the flat tangent space defined by the vielbein at spacetime point x,
and the γ â(â = 0, 1, 2, 3, . . .) are the usual Dirac gamma-matrices of Minkowski spacetime.
Moreover γ5 is defined, as usual (see, e.g., [17–19]), i.e. to be the same as in flat spacetime
and thus independent of spacetime variables.

A schematic model that demonstrates the formation of the color superconducting phase
is the extended NJL model with up- and down-quarks. This model may be considered as the
low-energy limit of QCD. For the color group SU(3)c its Lagrangian takes the form

L = q̄[iγ µ∇µ + µγ 0]q +
G1

2Nc

[(q̄q)2 + (q̄iγ 5�τq)2] +
G2

Nc

[iq̄cεε
bγ 5q][iq̄εεbγ 5qc]. (3)

2
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Here, µ is the quark chemical potential, qc = Cq̄ t , q̄c = qtC are charge-conjugated bispinors
(t stands for the transposition operation). The charge conjugation operation is defined, as usual
(see, e.g., [17]), with the help of the operator C = iγ 2̂γ 0̂, where the flat-space matrices γ 2̂

and γ 0̂ are used.
The quark field q ≡ qiα is a doublet of flavors and triplet of colors with indices

i = 1, 2;α = 1, 2, 3. Moreover, �τ ≡ (τ 1, τ 2, τ 3) denote Pauli matrices in the flavor space;
(ε)ik ≡ εik, (εb)αβ ≡ εαβb are the totally antisymmetric tensors in the flavor and color spaces,
respectively.

Next, by applying the usual bosonization procedure, we obtain the linearized version of
the Lagrangian (3) with the collective boson fields σ , �π and �,

L̃ = q̄[iγ µ∇µ + µγ 0]q − q̄(σ + iγ 5�τ �π)q − 3

2G1
(σ 2 + �π2) − 3

G2
�∗b�b

−�∗b[iqtCεεbγ 5q] − �b[iq̄εεbγ 5Cq̄ t ]. (4)

The fields σ and �π are color singlets, and �b is a color anti-triplet and flavor singlet.
Therefore, if 〈σ 〉 �= 0, the chiral symmetry is broken dynamically, and if 〈�b〉 �= 0, the color
symmetry is broken.

In the one-loop approximation, the partition function can be written as follows:

Z =
∫

[dq][dq̄][dσ ][d�π ][d�∗b][d�b] exp

{
i
∫

dDx
√−gL̃

}
, (5)

where g = det |gµν |. In what follows, it is convenient to consider the effective action for
boson fields, which is expressed through the integral over quark fields

exp{iSeff(σ, �π,�b,�∗b)} = N ′
∫

[dq][dq̄] exp

{
i
∫

dDx
√−gL̃

}
, (6)

where

Seff(σ, �π,�b,�∗b) = −
∫

dDx
√−g

[
3(σ 2 + �π2)

2G1
+

3�b�∗b

G2

]
+ Sq, (7)

where Sq is the quark contribution.
In the mean-field approximation, the fields σ , �π,�b and �∗b can be replaced by their

groundstate averages: 〈σ 〉, 〈 �π〉, 〈�b〉 and 〈�∗b〉, respectively. Let us choose the following
ground state of our model:

〈�1〉 = 〈�2〉 = 〈�π〉 = 0,

and denote 〈σ 〉, 〈�3〉 �= 0, by letters σ,�. Evidently, this choice breaks the color symmetry
down to the residual group SUc(2).

The quark contribution has the following form:

Sq(σ,�) = −i ln Det[(i∇̂ − σ + µγ 0)] − i

2
ln Det[4|�|2

+ (−i∇̂ − σ + µγ 0)(i∇̂ − σ + µγ 0)]. (8)

Here, the first determinant is over spinor, flavor and coordinate spaces, and the second one is
over the two-dimensional color space as well, and ∇̂ = γ µ∇µ.

Let us find the effective potential of the model with the global minimum point that will
determine the quantities σ and �. By definition Seff = −Veff

∫
dDx

√−g, where

Veff = 3σ 2

2G1
+

3��∗

G2
+ Ṽeff; Ṽeff = −Sq

v
, v =

∫
dDx

√−g. (9)

3
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3. Accelerated observer

The physics for an accelerated observer can be described by transforming from Minkowski
coordinates (x0, x1, �x⊥) to the Rindler coordinates (η, ρ, �x⊥) by means of the following
coordinate transformation:

x0 = ρ sinh aη, x1 = ρ cosh aη, xi = xi (i = 2, 3),

where η is the time variable in Rindler coordinates and a is the acceleration.
The line element is given by the relation

ds2 = a2ρ2 dη2 − dρ2 − d�x2
⊥.

In what follows, we shall limit our consideration to the right Rindler wedge. The worldline of
the observer is thus given in Rindler coordinates as

η(τ) = τ, ρ(τ ) = 1/a, �x⊥(τ ) = const. (10)

The quark contribution to the effective action can be written in the form

Sq = Sq1 + Sq2 = − i

2

[
tr ln B2

1 + 2 tr ln B2
2

]
, (11)

where we have summed over colors (leading to the factor 2 in the second term; the tr-operation
does not include color indices any more) and

B2
1 = (−iγ ν∇ν − σ − µγ 0)(iγ µ∇µ − σ + µγ 0),

B2
2 = 4|�|2 + (−iγ ν∇ν − σ + µγ 0)(iγ µ∇µ − σ + µγ 0).

(12)

Here the product of the relevant operators appearing in (12) can be represented in Rindler
coordinates as

B2 ≡ (−iγ ν∇ν − σ)(iγ µ∇µ − σ) = 1

ρ2

[
1

a
∂η +

1

2
γ0̂γ1̂

]2

−
[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (�γ �∇)2

⊥ − σ 2

]
.

(13)

In what follows, it is convenient to represent the operators B2
1 , B2

2 in the basis of the solutions
of the squared Dirac equation

B2��k⊥,j (η, �x⊥, ρ) = 0. (14)

The solutions can be sought in the form

��k⊥,j (η, �x⊥, ρ) = e−iajη ei�k⊥�x⊥ψj(ρ), (15)

and hence, with the consideration of (13), the function ψj(ρ) is the solution of the second-order
Bessel differential equation forming the basis of the Rindler modes (see, e.g., [20])(

ρ2 d2

dρ2
+ ρ

d

dρ
− m2ρ2 + E2

j

)
ψj(ρ) = 0, (16)

where for the Rindler modes in the fermion sector, we have to take

m2 = �k2
⊥ + σ 2, E2

j =
(
j ± i

2

)2
, 0 < j < +∞. (17)

Two independent solutions of equations (14), (16) can be obtained by using the projection
operator P± = 1

2 (1 ± γ0̂γ1̂) :

ψ
(+)
j = P+ψj , ψ

(−)
j = P−ψj .

4
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Then the normalized solutions of (16) look as follows:

ψ
(−)
j (ρ) =

√
(−2ij − 1) cosh πj

π
Kij+ 1

2
(mρ),

ψ
(+)
j (ρ) =

√
(+2ij − 1) cosh πj

π
Kij− 1

2
(mρ),

(18)

where Kν is the Macdonald function (modified Bessel function).
These solutions 〈ρ|�k⊥, j,±〉 = ψ

(±)

�k⊥,j
(ρ), for which we shall use the shorthand notation

ψ
(±)
j (ρ) ≡ ψ

(±)

�k⊥,j
(ρ), form a complete set of functions.

Taking the above formulae and the product of operators (13) into account, we obtain

B2
2 = 4|�|2 +

1

ρ2

[
1

a
∂η +

1

2
γ0̂γ1̂

]2

−
[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (�γ �∇)2

⊥ − σ 2

]

+
(µ

a

)2 1

ρ2
− 2

µ

aρ
[γ0̂σ − iγ0̂(�γ �∇)]. (19)

For our further calculations, we also have to transform, in the same way, the product of
operators in B2

1 :

B2
1 = 1

ρ2

[
1

a
∂η +

1

2
γ0̂γ1̂ − i

µ

a

]2

−
[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (�γ �∇)2

⊥ − σ 2

]
. (20)

In order to find nonvanishing condensates σ and �, one should solve the gap equations:

∂Veff

∂�∗ = 0,
∂Veff

∂σ
= 0. (21)

Moreover, by taking into account the fact that the position of the accelerated observer is defined
in (10), we can put ρ = 1/a.

3.1. Chiral symmetry breaking

First, let us consider chiral symmetry breaking. In this section, unlike [10], a nonzero chemical
potential µ will be taken into account.

Let us first assume that � = 0. Then according to (11) and (13),

Sq = −3

2
i tr ln B2

and the gap equation looks like

σ = − iG1σ∫
d4x

√−g
tr

1

B2
.

Going over to the momentum representation we obtain

σ = −iG1σNf

∫
dk0

2π

∫
d2k⊥
(2π)2

∫ ∞

0

dρ

ρ
〈�k⊥, k0, ρ| 1

B2
|�k⊥, k0, ρ〉|ρ=a−1 ,

where Nf = 2 is the number of flavors in our problem. With the use of the completeness
relation of the Rindler basis 〈ρ|�k⊥, j,±〉 = ψ

(±)

�k⊥,j
(ρ), let us go over to this basis in the variable

ρ, so that

ρ2 d2

dρ2
+ ρ

d

dρ
− m2ρ2 → −

(
j ± i

2

)2
.

Next, we are going to an imaginary time coordinate, i.e., to the Euclidean spacetime in
order to consider the thermal effect of acceleration [21, 22]. The Euclidean Rindler spacetime

5
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has a singularity at ρ = 0, therefore we have to choose the period of the imaginary time as
2π/a [16].

The gap equation for the critical curve, corresponding to σ = 0, finally looks as follows:

1 = G1

2π2
Nf

∫ ∞

0
dq q

{
tanh

(
π

q − µ

a

)
+ tanh

(
π

q + µ

a

)}
. (22)

The above equation precisely corresponds to the known expression for the critical curve,
obtained for finite temperature and chemical potential (see, e.g. [23]), if the correspondence
between the acceleration a and Unruh temperature T is taken into consideration,

π

a
= 1

2T
.

Now, recall that the Unruh temperature is given by the relation

T = a

2.5 × 1022(cm s−2)
K.

Let us take the value of the maximum critical temperature on the transition curve for the quark
condensate formation Tm = 0.169 GeV, calculated in [23]. Then, we find for the critical
acceleration the following estimate ac = 2πT = 2π × 0.169 GeV = 3.2 × 1035 cm s−2. This
value is an order of magnitude larger than the value found for the case of a vanishing chemical
potential in [10].

3.2. Color symmetry breaking and formation of a diquark condensate

In order to study the minimum in the variable � of the diquark condensate, we may here put
σ = 0. Now, we have

Sq2 = −i tr ln B2
2 = −i tr ln[4|�|2 + (−iγ ν∇ν + µγ 0)(iγ µ∇µ + µγ 0)]. (23)

The corresponding gap equation now takes the form

3�

G2
= 1∫

d4x
√−g

∂Sq2

∂�∗ .

Then the operators in the above equations can be expanded in the Rindler basis (18). Let
us again estimate the value of the critical Unruh temperature and acceleration, at which the
broken color symmetry is restored. For this purpose, we now put � = 0, and after going over
to the Euclidean spacetime and Matsubara frequencies the gap equation can again be written
in the form

1 = 2

3

G2

π2
Nf

[∫ �

0
dq q2 tanh π(q+µ)

a

q + µ
+

∫ �

µ

dq q2 tanh π(q−µ)

a

q − µ
+

∫ µ

0
dq q2 tanh π(µ−q)

a

µ − q

]
,

where the upper limit in the integral was replaced by the cutoff � for the physical regularization.
If the correspondence π

a
= 1

2T
between the acceleration a and temperature T is taken into

consideration, this result exactly corresponds to the well-known formula for the critical curve
in the usual CSC theory at finite temperature [24, 23]. Let us again give a rough estimate of
the order of the critical acceleration using the numerical results of [23]. By taking their value
of the critical temperature on the transition curve for color superconductivity Tc = 40 MeV,
and the chemical potential µ = 0.4 GeV, we find for the critical acceleration the following
estimate ac = 2πTc = 2π × 0.04 GeV = 7.5 × 1034 cm s−2, which differs from the critical
acceleration for restoration of chiral symmetry by a factor 4.

6
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4. Static Einstein universe

We will use the static D-dimensional Einstein universe as the simple example of the curved
spacetime. The line element

ds2 = dt2 − a2(dθ2 + sin2 θ d�D−2) (24)

gives the global topology R ⊗ S
D−1 of the universe, where a is the radius of the universe,

related to the scalar curvature by the relation R = (D − 1)(D − 2)a−2. The volume of the
universe is determined by the formula

V (a) = 2πD/2aD−1

�
(

D
2

) . (25)

In analogy with the case of flat Minkowski spacetime, we introduce the Hamiltonians Ĥ

and Ĥ of massless and massive particles respectively

Ĥ = �α �̂p, Ĥ = �α �̂p + σγ 0, (26)

where αk = γ 0γ k , and (p̂)k = −i∇k, k = 1, . . . , D − 1.
Then the quark contribution to the effective action can be written in the following form:

Sq = − i

2

{
ln Det[Ĥ2 − (p̂0 − µ)2] + ln Det

[
4|�|2 + (Ĥ − µ)2 − p̂2

0

] }
, (27)

where we have summed over colors (Det-operator does not include color space).
The eigenvalues of the operators Ĥ and Ĥ may be found exactly for the case of the static

D-dimensional Einstein universe. They are expressed through the corresponding eigenvalues
of the Dirac operator on the sphere S

D−1 [19, 25]

Ĥψl = ±ωlψl, ωl = 1

a

(
l +

D − 1

2

)
,

Ĥψl = ±Elψl, El =
√

ω2
l + σ 2, l = 0, 1, 2 . . . .

(28)

The degeneracies of ωl and El are equal to

dl = 2[(D+1)/2]�(D + l − 1)

l!�(D − 1)
, (29)

where [x] is the integer part of x.
After going over to the Euclidian spacetime and summing over Matsubara frequencies we

obtain the thermodynamic potential

�(σ,�) = 3

(
σ 2

2G1
+

|�|2
G2

)
− Nf

V
(Nc − 2)

∞∑
l=0

dl{El + T ln(1 + e−β(El−µ))

+ T ln(1 + e−β(El+µ))} − Nf

V

∞∑
l=0

dl

{√
(El − µ)2 + 4|�|2 +

√
(El + µ)2 + 4|�|2

+ 2T ln
(
1 + e−β

√
(El−µ)2+4|�|2) + 2T ln

(
1 + e−β

√
(El+µ)2+4|�|2)}. (30)

Now, imposing the condition on the effective potential, �(0, 0) = 0, we should subtract
a corresponding constant from it. The thermodynamic potential, normalized in this way, is
still divergent at large l, and hence, we should introduce a (soft) cutoff in the summation over
l by means of the multiplier e−ωl/� [12], where � is the cutoff parameter.

In flat spacetime, the regularization cutoff constant � can be determined from the
experimental results like pion mass or pion decay constant. Since we have no such experimental

7
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µ

Figure 1. The phase portrait at T = 0 for G1 = 10. Dashed (solid) lines denote first (second)-order
phase transitions. The bold point denotes a tricritical point. The numbers 1, 2 and 3 designate
the symmetric phase, the phase with chiral symmetry breaking and the superconducting phase,
respectively.

data in the curved spacetime, we restrict ourselves only to qualitative study of gravitation
effects. To this end, we scale the thermodynamic potential and all relevant quantities like
condensates, curvature, chemical potential and temperature by the unknown cutoff �. The
Cooper instability between quarks does not occur if the cutoff scale is less than the chemical
potential. However, since we use the soft cutoff regularization we think that our results are
still valid in the vicinity of the cutoff parameter as well.

Then the regularized thermodynamic potential is written as

�reg(σ,�) = 3

(
σ 2

2G1
+

|�|2
G2

)
− Nf

V
(Nc − 2)

∞∑
l=0

e−ωl dl

×{El + T ln(1 + e−β(El−µ)) + T ln(1 + e−β(El+µ))}

− Nf

V

∞∑
l=0

e−ωl dl

{√
(El − µ)2 + 4|�|2 +

√
(El + µ)2 + 4|�|2

+ 2T ln
(
1 + e−β

√
(El−µ)2+4|�|2) + 2T ln

(
1 + e−β

√
(El+µ)2+4|�|2)}. (31)

In the following section, we shall perform the numerical calculation of the points of the
global minimum of the finite regularized thermodynamic potential �reg(σ,�) − �reg(0, 0),
and with the use of them, consider phase transitions in the Einstein universe.

4.1. Phase transitions

In what follows, we shall fix the constant G2, similarly to what has been done in the flat case
[6, 26], by using the relation G2 = 3

8G1. For numerical estimates, let us choose the constant
G1 = 10 such that the chiral and/or color symmetries are completely broken. Moreover, let
us now limit ourselves to the investigation of the case D = 4 only.

In figure 1, the R–µ-phase portrait of the system at zero temperature is depicted. For
points in the symmetric phase 1, the global minimum of the thermodynamic potential is at
σ = 0,� = 0 (chiral and color symmetries are unbroken). In the region of phase 2, only

8
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Figure 2. The phase portraits at T = 0.35 (left picture) and at R = 3 (right picture), G1 = 10.

chiral symmetry is broken and σ �= 0,� = 0. The points in phase 3 correspond to the
formation of the diquark condensate (color superconductivity) and the minimum takes place
at σ = 0,� �= 0.

Moreover, the oscillation effect clearly visible in the phase curves of figure 1 should be
mentioned. This may be explained by the discreteness of the fermion energy levels (28) in
the compact space. This effect may be compared to the similar effect in the magnetic field H,
where fermion levels are also discrete (the Landau levels).

In addition, we considered also phase transitions at finite temperatures. In figure 2, R–µ-
and T–µ-phase portraits are depicted. It is clear from figure 2 that with growing temperature
both the chiral and color symmetries are restored. The similarity of plots in R–µ and T–µ

axes leads one to the conclusion that the parameters of curvature R and temperature T play
similar roles in restoring the symmetries of the system.

5. Summary and conclusions

First, we have investigated the role of the thermalization effect by the acceleration of an
observer for the restoration of chiral and color symmetries in quark matter at finite density
in the framework of the NJL model. Obviously, the acceleration here plays the role of the
temperature, as if the system is placed into a thermostat.

Second, we have considered the phase transitions in the static Einstein universe at finite
temperature and chemical potential. The effects of gravitation were exactly taken into account.
Moreover, an oscillation effect of the phase curves was found, which may be explained by the
discreteness of the fermion energy levels in the compact space.

The dependence of chiral and color properties of the quark matter on the acceleration
of the observer may be useful in the physics of black holes, where the Rindler metric can
be considered as an approximation for the description of the surface gravitational fields.
Moreover, the investigation of the influence of strong gravitational fields, such as in compact
stars, on the diquark condensation and thus on the possible existence of color superconductivity
in the core of the compact stars, is also of great importance.
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